Latent Dirichlet Allocation

Huang Chen

> 2015/09/16

Data Mining Lab, Big Data Research Center, School of Computer Science and Engineering, UESTC

Outline

Brief Introduction

About Math
Devil's Game LDA

Brief Introduction

Brief Introduction

How to measure the similarity of documents?

- TFIDF + Cosine
- Topic Model

Topic Model

- A type of statistical model for discovering the abstract "topics" that occur in a collection of documents. (Wiki)
- Particular words to ap ear in the document more or less frequently according to its topics
- More "bones" whats topic? doc about dogs and them more likely to appear.

Topic Model

- Key :
- A word in a doc should be chosed with a certain rule:
- Choose one topic with a certain probability

Choose a word from this topic with a certain probability

$$
P(\text { Word } \mid \text { Doc })=\sum_{\text {Topic }} \mathrm{P}(\text { Word } \mid \text { Topic }) * \mathrm{P}(\text { Topic } \mid \text { Doc })
$$

Math

Gamma -> Beta -> Dirichlet

Gamma Function

- Let's say $\mathbf{X}^{\mathbf{n}}$, As you know
- First derivative: $\mathbf{n} \mathbf{x}^{\mathbf{n - 1}}$
- Second derivative: $\mathbf{n (n - 1)} \mathbf{x}^{\mathbf{n - 2}}$
- K-th derivative ($\mathrm{n} \geq \mathrm{k}$):

$$
\frac{\mathrm{n}!}{(\mathrm{n}-\mathrm{k})!} x^{n-k}
$$

So What is the $\mathbf{1 / 2}$ order derivative of \mathbf{x} ?

What is the $1 / 2$ order derivative of x ?

- Gamma function

$$
\begin{aligned}
& \mathrm{T}(x)=\int_{0}^{+\infty} t^{x-1} e^{-t} d t \\
& \mathrm{~T}(n)=(n-1)!
\end{aligned}
$$

- The k-th derivative:

$$
\frac{\mathrm{T}(n+1)}{T(n-k+1)} x^{n-k}
$$

- So when $\mathrm{n}=1, \mathrm{k}=1 / 2$:
- The $1 / 2$ order derivative of $x=$ $2 \sqrt{\frac{\mathrm{x}}{\pi}}$

Devil's Game (1)

Suppose one day you are caught by a tricky devil, and he wants to play a game with you.

Devil has a button, once he push it, it will output a random number between 0 to 1 . He pushed 10 times, and got 10 random numbers. (i.i.d.)

Random number

The question is "What is the seventh big number of these ten ?" Give your answer and error no more than ξ

The distribution of $\mathbf{X}(\mathbf{k})$

Devil's Game (1)

$$
\mathrm{P}(x \leq X(k) \leq x+\Delta x)=?
$$

- Let's say X1 is located in this area:

Devil's Game (1)

$$
\begin{gathered}
x^{k-1} \\
\end{gathered}
$$

Equivalent event: $\mathrm{n}\binom{n-1}{k-1}$

Devil's Game (1)

$$
\begin{aligned}
& x^{k-2} \\
& (\Delta x)^{2} \\
& (1-x)^{n-k} \\
& 0 \\
& k-2 \text { values } \\
& \text { x } \mathbf{x}+\Delta x \\
& \mathrm{n} \text {-k values } \\
& X_{3}, \cdots X_{k} \quad X_{1}, X_{2} \quad X_{k+1}, \cdots X_{n} \\
& \mathrm{P}\left(\mathrm{E}^{\prime}\right)=\prod_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{P}\left(\mathrm{X}_{\mathrm{i}}\right)=x^{k-2}(1-x-\Delta x)^{n-k}(\Delta x)^{2}=o(\Delta x)
\end{aligned}
$$

Devil's Game (1)

Thus...

$$
\begin{aligned}
& \mathrm{P}(x \leq X(k) \leq x+\Delta x) \\
& =n\binom{n-1}{k-1} P(E)+o(\Delta x) \\
& =n\binom{n-1}{k-1} \mathrm{X}^{k-1}(1-x)^{n-k} \Delta x+o(\Delta x)
\end{aligned}
$$

Devil's Game (1)

Thus pdf...

$$
\begin{aligned}
& f(x)=\lim _{\Delta x \rightarrow 0} \frac{P(x \leq X(k) \leq x+\Delta x)}{\Delta x} \\
& =n\binom{n-1}{k-1} x^{k-1}(1-x)^{n-k} \\
& =\frac{n!}{(k-1)!(n-k)!} x^{k-1}(1-x)^{n-k} \quad x \in[0,1] \\
& =\frac{\mathrm{T}(n+1)}{T(k) T(n-k+1)} x^{k-1}(1-x)^{n-k} \\
& =\frac{\mathrm{T}(\alpha+\beta)}{T(\alpha) T(\beta)} x^{\alpha-1}(1-x)^{\beta-1} \quad \alpha=k, \beta=n-k+1
\end{aligned}
$$

Devil's Game (1)

Okay! Give your answer !

$$
\text { Let } \mathrm{n}=10, \mathrm{k}=7
$$

$$
\mathrm{f}(x)=\frac{10!}{(6)!(3)!} x^{6}(1-x)^{3} \quad x \in[0,1]
$$

Devil's Game (2)

But you're wrong......bad luck

Devil shows his mercy.
He allows you to push the button 5 times and tells you which is bigger, compared with the seventh big number, among the 5 numbers you got

Devil's Game (2)

Target :

$$
\mathrm{P}\left(X(k) \mid Y_{1}, Y_{2}, \cdots, Y_{m}\right) \quad Y_{1}, Y_{2}, \cdots, Y_{m} \stackrel{\mathrm{iid} d}{\sim} \operatorname{uniform}(0,1)
$$

What we know :

- Prior knowledge

$$
\mathrm{f}(X(k))=\operatorname{Beta}(X \mid k, n-k+1)
$$

- Say m_{1} numbers smaller than $X(k), m_{2}$ bigger

$$
\mathrm{Y} \sim \mathrm{~B}(m, X(k)) \Longleftarrow \text { Binomial }
$$

- Posterior knowledge

$$
f\left(X(k) \mid m_{1}, m_{2}\right)=\operatorname{Beta}\left(X \mid k+m_{1}, n-k+1+m_{2}\right)
$$

Devil's Game (2)

Thus ...

$$
\begin{aligned}
& \operatorname{Beta}(p \mid k, n-k+1)+\operatorname{Binom} \operatorname{Coun} t\left(m_{1}, m_{2}\right) \\
& =\operatorname{Beta}\left(p \mid k+m_{1}, n-k+1+m_{2}\right) \\
& p=P(X(k))
\end{aligned}
$$

Beta-Binomial Conjugate

*Conjugate

If the posterior distributions $p(\theta \mid x)$ are in the same family as the prior probability distribution $p(\theta)$,

The prior and posterior are then called conjugate distributions

The prior is called a conjugate prior for the likelihood function.

Devil's Game (2)

If there are 2 numbers smaller than $X(7)$:

Give your answer !

$$
\operatorname{Beta}(x \mid 9,7)=\frac{15!}{(8)!(6)!} x^{8}(1-x)^{6} \quad x \in[0,1]
$$

Devil's Game (3)

Luckily, you're right
However, Devil wants play one more time

Push 20 times, What are the 7-th and 13-th big number?

Devil's Game (3)

Target :

Joint distribution of $\left(X\left(\mathrm{k}_{1}\right), \mathrm{X}\left(\mathrm{K}_{1}+\mathrm{K}_{2}\right)\right)$

Solution :

$$
\mathrm{P}(E)=\frac{n!}{\left(k_{1}-1\right)!\left(k_{2}-1\right)!\left(n-k_{1}-k_{2}\right)!} x_{1}^{k_{1}-1} x_{2}^{k_{2}-1} x_{3}^{n-k_{1}-k_{2}}(\Delta x)^{2}
$$

Devil's Game (3)

Thus pdf..

$$
\begin{aligned}
& \mathrm{f}\left(x_{1}, x_{2}, x_{3}\right)=\frac{n!}{\left(k_{1}-1\right)!\left(k_{2}-1\right)!\left(n-k_{1}-k_{2}\right)!} x_{1}^{k_{1}-1} x_{2}^{k_{2}-1} x_{3}^{n-k_{1}-k_{2}} \\
& =\frac{T(n+1)}{T\left(k_{1}\right) T\left(k_{2}\right) T\left(n-k_{1}-k_{2}+1\right)} x_{1}^{k_{1}-1} x_{2}^{k_{2}-1} x_{3}^{n-k_{1}-k_{2}} \\
& =\frac{\mathrm{T}\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)}{\mathrm{T}\left(\alpha_{1}\right) \mathrm{T}\left(\alpha_{2}\right) \mathrm{T}\left(\alpha_{3}\right)} x_{1}^{\alpha_{1}-1} x_{2}^{\alpha_{2}-1} x_{3}^{\alpha_{3}-1} \\
& \quad \alpha_{1}=k_{1}, \alpha_{2}=k_{2}, \alpha_{3}=n-k_{1}-k_{2}
\end{aligned}
$$

Devil's Game (4)

Again, He allows you to push m times, and tells you which one is bigger among them

What we know :

- Prior knowledge
- Say $\mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}$

$$
\operatorname{Multi}(\vec{m} \mid \vec{x}) \quad \vec{m}=\left(m_{1}, m_{2}, m_{3}\right)
$$

- Posterior knowledge

$$
\operatorname{Dir}(\vec{X} \mid \vec{k}+\overrightarrow{\mathrm{m}}) \quad \text { Dirichlet-Multinomia }
$$

Part Three

Latent Dirichlet Allocation

LDA Topic Model

Topics

Topic proportions and assignments

gene	0.04
dna	0.02
genetic	0.01
\cdots	

life	0.02
evolve	0.01
organism	0.01
\ldots	

brain	0.04
neuron	0.02
nerve	0.01

Create Document

Topic distribution of doc m

LDA Topic Model

- Seen
- Words in the documents

P(z|w)

- Latent
- Topic
- Topic distribution of document
- Word distribution of topic

LDA Topic Model

Keys:

- 2 Processes

$$
\begin{aligned}
& \vec{\alpha} \Longrightarrow \vec{\vartheta}_{\mathrm{m}} \Longrightarrow \mathrm{z}_{m, n} \\
& \vec{\beta} \Longrightarrow \overrightarrow{\varphi_{\mathrm{k}}} \Longrightarrow \mathrm{w}_{m, n} \mid \mathrm{k}=z_{m, n}
\end{aligned}
$$

- ($\mathrm{M}+\mathrm{K}$) Dirichlet-Multinomial Conjugate

LDA Topic Model

LDA Topic Model

$\vec{\beta} \xlongequal{\text { Dirichlet }} \overrightarrow{\hat{\varphi}_{\mathrm{k}}} \xlongequal{\text { Multinomial }} \mathrm{w}_{m, n} \mid \mathrm{k}=z_{m, n}$

$$
\mathrm{P}\left(\overrightarrow{\left.\mathrm{w}(\mathrm{k}) \mid \vec{\beta})=\frac{\Delta\left(\vec{n}_{\mathrm{k}}+\vec{\beta}\right)}{\Delta(\vec{\beta})} \quad \vec{n}_{\mathrm{k}}=\left(\mathrm{n}_{k}{ }^{1}, \cdots \mathrm{n}_{k}{ }^{V}\right), ~()^{2}\right)}\right.
$$

- n_{k} is the word distribution of topic k

LDA Topic Model

- Joint distribution

$$
\begin{aligned}
& \mathrm{P}(\vec{w}, \vec{z} \mid \vec{\alpha}, \vec{\beta}) \\
& =\mathrm{P}(\vec{w} \mid \vec{z}, \vec{\beta}) \mathrm{P}(\vec{z} \mid \vec{\alpha}) \\
& =\prod_{k=1}^{K} \frac{\Delta\left(\overrightarrow{n_{k}}+\vec{\beta}\right)}{\Delta(\vec{\beta})} \prod_{m=1}^{M} \frac{\Delta\left(\overrightarrow{n_{m}}+\vec{\alpha}\right)}{\Delta(\vec{\alpha})}
\end{aligned}
$$

- Then what's next?

LDA Topic Model - Mind Mapping

- Target $\mathrm{P}(\mathrm{z} \mid \mathrm{w}) \rightleftharpoons$ Gibbs Sampling

Sampling on $\mathrm{P}(\mathrm{z} \mid \mathrm{w})$ distribution

$$
\mathrm{P}\left(z_{i}=k \mid \overrightarrow{z_{\sim i}}, \vec{w}\right) \quad \mathrm{i}=(m, n)
$$

Instacences

φ_{k} Count Words sharing the same topic

LDA + Gibbs Training

- Initialization
- Foreach word in docs, randomly give them a topic
- Gibbs Sampling
- Update the topic of every word
- Repeat step 2 until Gibbs converge
- Output
- Topic-word Matrix

LDA Inference

- For a new document D'
- Foreach words in D', randomly pick a topic
- Gibbs Sampling, together with training output, update the topic of every word
- Repeat step 2 until converge
- Count topic in D', then we have its

NLTK LDA Test

input documents:
['i love you', 'love is you and me', "it's nice to meet you", "i'm so glad to see you", 'you wanna meet me very much'] making LDA model
show topics:
0.146 *love +0.131 *meet $+0.124 \star$ see $+0.124 \star \dagger 1 m+0.120 \star g l a d+0.108 \star i t ' s+0.102 \star n i c e+0.073 * w a n n a+0.072 \star m u c h$ 0.168 *meet +0.154 *love +0.127 *much +0.127 *wanna +0.098 *nice +0.093 *it's $+0.080 \star$ glad $+0.077 \star$ i $^{\prime} \mathrm{m}+0.076 *$ see predict==
load stopword
remove stopwords
making dictionary
[["i'm", 'happy', 'see']]
storing dictionary
making corpus..
$[(0,0.31474072738923797),(1,0.68525927261076203)]$

Process finished with exit code 0

Q\&A

Markov Chain Monte Carlo（MCMC）

关键问题：

构造转移矩阵 P ，使得它的平稳分布就是待采样的分布 $p(x)$

细致平稳条件：

如果非周期的马氏链的转移矩阵P和分布 $\pi(x)$ ，满足

$$
\pi(i) P \mathrm{Pij}=\pi(\mathrm{j}) \mathrm{Pji} \text { for all } \mathrm{i}, \mathrm{j}
$$

则 $\pi(x)$ 就是它的平稳分布
接受率：

$$
p(i) \underbrace{q(i, j) \alpha(i, j)}_{Q^{\prime}(i, j)}=p(j) \underbrace{q(j, i) \alpha(j, i)}_{Q^{\prime}(j, i)}
$$

MCMC

Algorithm 5 MCMC 采样算法

1：初始化马氏链初始状态 $X_{0}=x_{0}$
2 ：对 $t=0,1,2, \cdots$ ，循环以下过程进行采样

- 第 t 个时刻马氏链状态为 $X_{t}=x_{t}$ ，采样 $y \sim q\left(x \mid x_{t}\right)$
- 从均匀分布采样 $u \sim$ Uniform $[0,1]$
- 如果 $u<\alpha\left(x_{t}, y\right)=p(y) q\left(x_{t} \mid y\right)$ 则接受转移 $x_{t} \rightarrow y$ ，即 $X_{t+1}=y$
- 否则不接受转移，即 $X_{t+1}=x_{t}$

Gibbs Sampling

考虑坐标轴上的两个点 $A(x 1, y 1), ~ B(x 1, y 2)$

$$
\begin{aligned}
p\left(x_{1}, y_{1}\right) p\left(y_{2} \mid x_{1}\right) & =p\left(x_{1}\right) p\left(y_{1} \mid x_{1}\right) p\left(y_{2} \mid x_{1}\right) \\
p\left(x_{1}, y_{2}\right) p\left(y_{1} \mid x_{1}\right) & =p\left(x_{1}\right) p\left(y_{2} \mid x_{1}\right) p\left(y_{1} \mid x_{1}\right) \\
& \\
p\left(x_{1}, y_{1}\right) p\left(y_{2} \mid x_{1}\right) & =p\left(x_{1}, y_{2}\right) p\left(y_{1} \mid x_{1}\right) \\
& \\
p(A) p\left(y_{2} \mid x_{1}\right) & =p(B) p\left(y_{1} \mid x_{1}\right)
\end{aligned}
$$

Gibbs Sampling

在 $\mathrm{X}=\mathrm{X} 1$ 这条线上，如使用条件分布 $\mathrm{P}(\mathrm{Y} \mid \mathrm{X})$ 作为任何两个点之间的转移概率，那么任何两个点之间的转移概率满足平稳条件

Gibbs Sampling

Algorithm 7 二维Gibbs Sampling 算法
1：随机初始化 $X_{0}=x_{0} Y_{0}=y_{0}$
2 ：对 $t=0,1,2, \cdots$ 循环采样
1．$y_{t+1} \sim p\left(y \mid x_{t}\right)$
2．$x_{t+1} \sim p\left(x \mid y_{t+1}\right)$

Gibbs Sampling

Algorithm 8 n维Gibbs Sampling 算法
1：随机初始化 $\left\{x_{i}: i=1, \cdots, n\right\}$
2：对 $t=0,1,2, \cdots$ 循环采样
1．$x_{1}^{(t+1)} \sim p\left(x_{1} \mid x_{2}^{(t)}, x_{3}^{(t)}, \cdots, x_{n}^{(t)}\right)$
2．$x_{2}^{(t+1)} \sim p\left(x_{2} \mid x_{1}^{(t+1)}, x_{3}^{(t)}, \cdots, x_{n}^{(t)}\right)$
3．\cdot ．
4．$x_{j}^{(t+1)} \sim p\left(x_{j} \mid x_{1}^{(t+1)}, \cdots, x_{j-1}^{(t+1)}, x_{j+1}^{(t)}, \cdots, x_{n}^{(t)}\right)$
5．\cdot ．
6．$x_{n}^{(t+1)} \sim p\left(x_{n} \mid x_{1}^{(t+1)}, x_{2}^{t}, \cdots, x_{n-1}^{(t+1)}\right)$

Gibbs Sampling on LDA

$$
\begin{aligned}
& p\left(z_{i}=k \mid \overrightarrow{\mathbf{z}}_{\neg i}, \overrightarrow{\mathbf{w}}\right) \propto p\left(z_{i}=k, w_{i}=t \mid \overrightarrow{\mathbf{z}}_{\neg i}, \overrightarrow{\mathbf{w}}_{\neg i}\right) \\
&= \int p\left(z_{i}=k, w_{i}=t, \vec{\theta}_{m}, \vec{\varphi}_{k} \mid \overrightarrow{\mathbf{z}}_{\neg i}, \overrightarrow{\mathbf{w}}_{\neg i}\right) d \vec{\theta}_{m} d \vec{\varphi}_{k} \\
&= \int p\left(z_{i}=k, \vec{\theta}_{m} \mid \overrightarrow{\mathbf{z}}_{\neg i}, \overrightarrow{\mathbf{w}}_{\neg i}\right) \cdot p\left(w_{i}=t, \vec{\varphi}_{k} \mid \overrightarrow{\mathbf{z}}_{\neg i}, \overrightarrow{\mathbf{w}}_{\neg i}\right) d \vec{\theta}_{m} d \vec{\varphi}_{k} \\
&= \int p\left(z_{i}=k \mid \vec{\theta}_{m}\right) p\left(\vec{\theta}_{m} \mid \overrightarrow{\mathbf{z}}_{\neg i}, \overrightarrow{\mathbf{w}}_{\neg i}\right) \cdot p\left(w_{i}=t \mid \vec{\varphi}_{k}\right) p\left(\vec{\varphi}_{k} \mid \overrightarrow{\mathbf{z}}_{\neg i}, \overrightarrow{\mathbf{w}}_{\neg i}\right) d \vec{\theta}_{m} d \vec{\varphi}_{k} \\
&= \int p\left(z_{i}=k \mid \vec{\theta}_{m}\right) \operatorname{Dir}\left(\vec{\theta}_{m} \mid \vec{n}_{m, \neg i}+\vec{\alpha}\right) d \vec{\theta}_{m} \\
& \cdot \int p\left(w_{i}=t \mid \vec{\varphi}_{k}\right) \operatorname{Dir}\left(\vec{\varphi}_{k} \mid \vec{n}_{k, \neg i}+\vec{\beta}\right) d \vec{\varphi}_{k} \\
&= \int \theta_{m k} \operatorname{Dir}\left(\vec{\theta}_{m} \mid \vec{n}_{m, \neg i}+\vec{\alpha}\right) d \vec{\theta}_{m} \cdot \int \varphi_{k t} \operatorname{Dir}\left(\vec{\varphi}_{k} \mid \vec{n}_{k, \neg i}+\vec{\beta}\right) d \vec{\varphi}_{k} \\
&= E\left(\theta_{m k}\right) \cdot E\left(\varphi_{k t}\right) \\
&= \hat{\theta}_{m k} \cdot \hat{\varphi}_{k t}
\end{aligned}
$$

back

